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INTRODUCTION 
 
 
It has been well recognized that merging information from different imaging modalities, 
such as mammography, sonography and dynamic contrast-enhanced magnetic resonance 
imaging (DCE-MRI), will greatly benefit the diagnosis of breast cancer [1-3]. To 
interpret images from different modalities, one essential problem is to address the 
nontrivial task of identifying corresponding images of lesions as seen with different 
imaging techniques. The purpose of this research is to develop correlative feature 
analysis methods for integrating image information from multi-modality breast images, 
taking advantage of the information from different views and/or different modalities, and 
thus improving the sensitivity and specificity of breast cancer diagnosis. During the 
second year of the project, we have further evaluated the performance of the proposed 
dual-stage segmentation method for the task of assessing the likelihood of malignancy of 
a mass lesion. We have developed a computerized correlative feature analysis framework 
to identify the correspondence between lesions imaged in different images, and evaluated 
its performance on two different mammographic view pairs, i.e. Cranio-Caudal versus 
Medio-Lateral and Cranio-Caudal versus Medio-Lateral-Oblique. Furthermore, we 
conducted a pilot study on computerized diagnosis of breast lesions with mammography 
and DCE-MRI. 



5 

 
BODY 

 
Research Accomplishments 
 
1. Database collection 
 
We continued collecting a multi-modality image database from the University of Chicago 
Hospital, which includes full-field digital mammographic (FFDM) images, breast 
ultrasound (US) images and dynamic contrast-enhanced magnetic resonance (DCE-MR) 
images. The FFDM database consists of 167 malignant and 154 benign lesions. All the 
images were obtained from GE Senographe 2000D systems with a spatial resolution of 
100µm×100µm.  The US database consists of 205 malignant solid lesions, 113 simple 
cysts and 139 benign solid lesions. The US images were obtained with a Philips HDI 
5000 US unit and a 12-5MHz linear array probe. The pixel size varied from 51 µm to 214 
µm, with the average value of 109 µm. The MR database consists of 203 malignant and 
131 benign lesions. The MR images were obtained from 1.5T GE scanners using T1-
weighted 3D spoiled gradient echo sequences. For each case, one pre-contrast and five 
post-contrast series were taken and each series contained 60 coronal slices with a range of 
planar spatial resolution from 1.25×1.25mm2 to 1.6×1.6mm2. Slice thickness ranged from 
3 to 4 mm depending on breast size.  
 
All the lesions in the multi-modality database were identified by expert breast 
radiologists based on visual criterion and either biopsy or aspiration proven reports. An 
expert radiologist is helping us identify the correspondence of lesions appeared in 
different modality images. 
 
2. Investigation of lesion segmentation to FFDM computer-aided diagnosis (CAD) 
 
In the first-year report, we have developed a dual-stage method for lesion segmentation 
on FFDM images [4]. The performance of the proposed algorithm was evaluated by the 
area overlap ratio between computer segmentation and radiologist’s outline. 
 
We continued to evaluate the performance of the proposed segmentation algorithm for 
the task of assessing the likelihood of malignancy of lesion [5]. As characteristic features 
are extracted from the segmented lesion itself, or the neighborhood of the segmented 
lesion, the more accurately segmented lesions, the more meaningful and stable features 
are expected. In our study, 15 features were automatically extracted to quantify the 
characteristics of spiculation, margin, contrast, shape and texture. An effective subset of 
features were automatically selected by a stepwise method and merged with a Bayesian 
Artificial Neural Network (BANN) [6] to yield a discriminant score, which estimated the 
probability of malignancy (PM) for a given lesion. The performance of individual 
features and the selected feature subset was evaluated using receiver operating 
characteristic (ROC) analysis [7], with the area under the ROC curve (AUC) as a figure 
of merit. 
 



6 

We compared the classification performance of the proposed method with that of a 
conventional region-growing method [8], which was used for our previously developed 
CAD system for mammographic images. The FFDM dataset used in this study included 
146 malignant and 134 benign cases [5]. The results showed that the performances of 
most of the spiculation features were improved with the dual-stage segmentation method. 
However, we failed to observe improvement for other features. In leave-one-out 
evaluation by lesion, the effective feature subset by the dual-stage segmentation, 
including two spiculation features and one gradient texture, yielded an AUC of 0.78, 
while the prior-selected feature subset from the region growing segmentation, including 
three spiculation features, one margin sharpness and one average gray level of lesion, 
yielded an AUC of 0.72. The difference is statistically significant (p=0.04). This work 
has been reported at the AAPM annual meeting, 2008. Please refer to Appendix A for 
more details. 
 
3. Investigation of correlative feature analysis on FFDM 
 
We developed a computerized correlative feature analysis (CFA) framework to 
differentiate between corresponding images of the same lesion in different views and 
non-corresponding images, i.e. images of different lesions [9]. For a pair of images from 
different mammographic views, mass lesions are firstly segmented from the surrounding 
tissue by the automatic segmentation method. Then various lesion features are 
automatically extracted from each of the two views to quantify the characteristics of 
density, size, texture and the neighborhood of the lesion, as well as its distance to the 
nipple. A two-step scheme is employed to estimate the probability that the two lesion 
images from different mammographic views are of the same physical lesion. In the first 
step, a correspondence score for each pair-wise feature is estimated by a BANN, which 
estimates the probability that the two images are corresponding, based on the specific 
feature. Then, a subset of these correspondence scores are selected by stepwise feature 
selection method and merged with another BANN to yield an overall probability of 
correspondence. ROC analysis is used to evaluate the performance of the individual 
features and the selected subset in the task of distinguishing corresponding and non-
corresponding pairs. 
 
We firstly applied this CFA to craniocaudal (CC) versus mediolateral (ML) views [9]. 
Based on the FFDM database, we constructed 123 corresponding image pairs and 82 non-
corresponding pairs. It should be noted that before the two-step classification scheme, the 
correlation coefficients between the individual features from corresponding images were 
calculated. Only those features with correlation coefficient greater than 0.5 were regarded 
as useful candidates and thus performed further analysis. With leave-one-out (by physical 
lesion) evaluation, the distance feature outperformed among the 18 individual features, 
yielding an AUC of 0.81±0.02. The feature-correspondence score subset, which included 
distance, gradient texture and ROI-based correlation, yielded an AUC of 0.87±0.02. The 
improvement by using multiple feature scores was statistically significant compared to 
single feature performance (p=0.01). 
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We also investigated the effect of lesion segmentation by comparing the performance of 
the dual-stage segmentation algorithm and that of radiologist’s outline for the task of 
distinguishing corresponding and non-corresponding image pairs [9]. For 5 of the 18 
features, manual segmentation yielded statistically significant higher AUC values than 
computer segmentation (overall significant level αT=0.05). The subset selected from the 
feature-based correspondence scores based on manually-segmented lesions included 
distance, equivalent diameter and gradient texture, which yielded an AUC of 0.89±0.02. 
We failed to show a statistically significant difference between the overall performance 
of manual segmentation and that of computer segmentation (p=0.35). A full description 
of the CFA methodology and its application to CC versus ML views are in reference [9], 
which is attached as Appendix B. 
 
Furthermore, we extended the application of CFA to CC versus MLO views [10]. We 
constructed 104 corresponding image pairs and 95 non-corresponding pairs. The distance 
was also the best individual feature with AUC of 0.78±0.03. The selected feature subset, 
including distance, ROI-based energy and ROI-based homogeneity, yielded an AUC of 
0.88±0.02. This improvement was statistically significant (p < 0.001). Although most of 
the selected mathematical descriptors were different from those based on CC versus ML 
views, they did represent the same physical characteristic, i.e. texture. From the entire 
FFDM database, we constructed a dataset of lesions with CC, MLO and ML views, and 
obtained 83 corresponding pairs and 66 non-corresponding pairs. The leave-one-out (by 
physical lesion) was performed on the paired lesions only. The proposed CFA method 
yielded an AUC of 0.87±0.02 for CC versus ML views, and 0.90±0.02 for CC versus 
MLO views. The difference was not statistically significant (p=0.49). The results showed 
that CFA was robust across two different view pairs (CC versus ML and CC versus 
MLO). This work has been reported in the 9th International Workshop on Digital 
Mammography (IWDM), please refer to Appendix C for more details. 
 
4. Multimodality breast cancer classification with mammography and DCE-MRI 
 
In order to evaluate the roles of corresponding lesions and their features in breast CAD, 
we investigated the multimodality breast cancer classification with mammography [8] 
and DCE-MR images [11]. In this pilot study [12], we used a FFDM database including 
321 lesions (167 malignant and 154 benign) and a DCE-MRI database including 181 
lesions (97 malignant and 84 benign). From these two databases, we constructed a 
multimodality dataset of 51 lesions (29 malignant and 22 benign). Mammograms and 
DCE-MR images are available for these lesions. 
 
For each lesion on each modality, computer automatically segmented the mass lesions 
and extracted a set of features. Linear stepwise feature selection was firstly performed on 
single modalities, yielding one feature subset for each modality. Then, these selected 
features served as the input to another feature selection procedure when extracting useful 
information from both modalities. The selected features were merged by a Linear 
Discrinimant Analysis (LDA) into a discriminant score. ROC analysis was used to 
evaluate the performance of each selected feature subset in the task of distinguishing 
between malignant and benign lesions. 
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With leave-one-out (by physical lesion) evaluation on the multimodality dataset [12], the 
mammography-only features yielded an AUC of 0.62 and the DCE-MRI-only features 
yielded an AUC of 0.90. The combination of these two modalities, which included a 
spiculation feature from mammography and a kinetic feature from DCE-MRI, yielded an 
AUC of 0.94. The improvement of combining multi-modality information was 
statistically significant as compared to the use of mammography only (p=10-4). However, 
we failed to show statistically significant improvement with the multi-modality features 
as compared to DCE-MRI, mostly due to the limited multi-modality dataset (p=0.22). 
 

In the previous studies [8][11], spiculation and kinetic features have been justified as the 
best features when distinguishing malignant and benign lesions for mammography and 
DCE-MRI, respectively. Our feature selection method correctly captured these two 
features when combining information from different modalities. The results showed that 
combining information from multiple modalities performed better than the single 
modality in the task of distinguishing between malignant and benign lesions. This work 
has been submitted to SPIE Medical Imaging Conference, 2009. Please refer to Appendix 
D for more details. . 



9 

KEY RESEARCH ACCOMPLISHMENTS 
 
• Expanded the multi-modality database, which includes full-field digital 

mammograms, breast ultrasound images and breast MR images. 

• Evaluated the proposed dual-stage segmentation method for the task of assessing the 
likelihood of malignancy of a mass lesion on FFDM images, which yielded improved 
classification performance over that with region-growing method. 

• Developed a computerized correlative feature analysis (CFA) framework to identify 
the correspondence between lesions imaged in different images. The two-step 
classification scheme not only effectively utilizes the information regarding 
correlation between feature pairs, but also efficiently combines multiple classifiers 
into a final decision.  

• Evaluated the proposed correlative feature analysis on two sets of pair-wise 
mammographic views, i.e. CC versus ML and CC versus MLO. The results show that 
the proposed correlative feature analysis is effective and robust across different view 
pairs. 

• Conducted a pilot study on computerized diagnosis of breast lesions with 
mammography and DCE-MRI. The results showed that combining information from 
multiple modalities performed better than the single modality in the task of 
distinguishing between malignant and benign lesions. 
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REPORTABLE OUTCOMES 
 
Peer-reviewed Journal Papers 
 

• Y. Yuan, M. L. Giger, H. Li, K. Suzuki and C. Sennett, “A dual-stage method for 
lesion segmentation on digital mammograms”, Med. Phys., vol. 34, pp. 4180-4193, 
2007. 

• Y. Yuan, M. L. Giger, H. Li and C. Sennett, “Correlative feature analysis on FFDM”, 
Med. Phys., vol. 35, pp. 5490-5500, 2008. 

• H. Li, M. L. Giger, Y. Yuan, W. Chen, K. Horsch, L. Lan, A. R. Jamieson, C. A. 
Sennett and S. A. Jansen, “Evaluation of computer-aided diagnosis on a large clinical 
full-field digital mammographic dataset,” Acad. Radiol., vol. 15, pp. 1437-1445, 2008. 

Conference Proceeding Papers 
 

• Y. Yuan, M. L. Giger, H. Li, L. Lan and C. Sennett, “Identifying corresponding 
lesions from CC and MLO views via correlative feature analysis,” IWDM 2008, 
LNCS 5116, 323-328, 2008. 

• H. Li, M. L. Giger, Y. Yuan, L. Lan and C. Sennett, “Performance of CADx on a 
large clinical database of FFDM images,” IWDM 2008, LNCS 5116, 510-514, 2008. 

• Y. Yuan, M. L. Giger, H. Li and C. Sennett, “Correlative feature analysis of FFDM 
images,” Proc. SPIE, 6915, 69151L, 2008. 

Conference Presentations and Abstracts 
 

• Y. Yuan, M. L. Giger, H. Li, L. Lan and C. Sennett, “Comparison of image 
segmentation methods on classification performance of FFDM CAD,” American 
Association of Physicists in Medicine, Houston, Texas, 2008. 

• Y. Yuan, M. L. Giger, H. Li and C. Sennett, “Breast lesion classification using 
mammography and DCE-MRI”, Proc. SPIE, 7260, 72600O, 2009. 

Honors and Awards 
 

• Women’s Board Travel Awards in the Division of the Biological Sciences, The 
University of Chicago, 2008 
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CONCLUSIONS 
 
During the period from 1 September 2007 through 31 August 2008, we have expanded 
our multimodality database including full-field digital mammograms, breast ultrasound 
images and breast DCE-MRI images. We further evaluated the dual-stage segmentation 
method for the task of assessing the likelihood of malignancy of a mass lesion on FFDM 
images, which yielded improved classification performance over that with region-
growing method. We have developed a computerized correlative feature analysis 
framework to identify the correspondence between lesions imaged in different images, 
and evaluated its performance on two sets of pair-wise mammographic views (CC vs. ML 
and CC vs. MLO). The results showed that the proposed method is effective and robust 
across different view pairs. Furthermore, we conducted a pilot investigation on the roles 
of corresponding lesions and their features in computer-aided diagnosis using 
mammography and DCE-MRI. The results showed that combining information from 
multiple modalities performed better than the single modality in the task of distinguishing 
between malignant and benign lesions. 
 
Overall, we have achieved the goals for the second year and laid down a solid foundation 
for the research in the next year. For the third year of this grant, our efforts will focus on 
developing a mutual information based feature selection method and comparing with the 
stepwise feature selection and genetic algorithm-based methods. Moreover, we will apply 
the proposed correlative feature analysis to identify the correspondence of lesions from 
multimodality images, such as mammography and DCE-MRI. At last, we will investigate 
methods for integrating information from different modalities and evaluate the 
contribution of correlative feature analysis to computer-aided diagnosis. 
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Comparison of image segmentation methods on classification performance of FFDM CAD 

Section I: Segmentation methods 
 
The classification performance of two segmentation methods were investigated and 
compared in this study. 
 
1) Region growing method[1] 
 
In the region growing method, a two-dimensional background correction and histogram 
equalization are first applied to the original image data. Gray level thresholding is 
subsequently performed on the processed image to yield contours. By monitoring the size 
and shape of the evolving contour with each incremental threshold step, the final lesion 
contour (i.e., lesion margin), corresponding to an abrupt transition from small size to 
larger size, and from high circularity to low circularity, is automatically selected. 
 
2) Dual-stage segmentation[2]  
 
In the dual-stage segmentation method, a radial gradient index (RGI) based segmentation 
is used to yield an initial contour close to the lesion boundary location in a 
computationally efficient manner. This initial segmentation also provides a base to 
identify the effective circumstance of the lesion via an automatic background estimation 
method. Then a region-based active contour model is utilized to evolve the contour to the 
lesion boundary. This active contour model relies on an intrinsic property of image 
segmentation that each segmented region should be as homogeneous and possible for an 
image formed by two regions. Instead of empirically determined criteria such as fixed 
iteration times, a dynamic stopping criterion is implemented to terminate the contour 
evolution when it reaches the lesion boundary. 
 
Section II: Segmentation results 
 
The performance of segmentation was initially evaluated by comparing the computer 
segmentation with manual outlines delineated by an expert breast radiologist. Figure 1 
shows a malignant example of lesion segmentation, which indicates that the dual-stage  
 

 
 

             (a)                    (b)    (c) 
Fig. 1 A malignant example of lesion segmentation via different methods: (a)  region growing, (b) 
dual-stage method, and (c) radiologist’s outline 

Appendix A
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method visually demonstrates a much closer agreement with the radiologist’s outline of 
the lesion. 
 
Section III: Classification performance 
 
The database included 146 malignant and 134 benign lesions, and 15 features were 
automatically extracted to quantify the characteristics of speculation, margin, contrast, 
shape and texture. By stepwise feature selection with Wilks lambda criterion, three 
features, including normalized radial gradient (NRG) of ROI, NRG of lesion and gradient 
texture, were selected from 15 features [1] being extracted from the lesions segmented by 
the dual-stage method, which yielded an AUC of 0.78. Margin sharpness, gradient texture, 
two lesion margin spiculation features and the average gray level were selected for region 
growing method, yielding an AUC of 0.72. The difference is statistically significant. 
Figure 2 shows the ROC curves resulting from evaluation of these two groups of features.  
 

 
Fig.2 ROC curves of leave-one-out by lesion for the feature subset from the dual-stage segmentation 
method (solid line) and the feature subset from the region growing method (dash line). 
 
Section IV: References 
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Identifying the corresponding images of a lesion in different views is an essential step in improving
the diagnostic ability of both radiologists and computer-aided diagnosis �CAD� systems. Because of
the nonrigidity of the breasts and the 2D projective property of mammograms, this task is not
trivial. In this pilot study, we present a computerized framework that differentiates between corre-
sponding images of the same lesion in different views and noncorresponding images, i.e., images of
different lesions. A dual-stage segmentation method, which employs an initial radial gradient index
�RGI� based segmentation and an active contour model, is applied to extract mass lesions from the
surrounding parenchyma. Then various lesion features are automatically extracted from each of the
two views of each lesion to quantify the characteristics of density, size, texture and the neighbor-
hood of the lesion, as well as its distance to the nipple. A two-step scheme is employed to estimate
the probability that the two lesion images from different mammographic views are of the same
physical lesion. In the first step, a correspondence metric for each pairwise feature is estimated by
a Bayesian artificial neural network �BANN�. Then, these pairwise correspondence metrics are
combined using another BANN to yield an overall probability of correspondence. Receiver oper-
ating characteristic �ROC� analysis was used to evaluate the performance of the individual features
and the selected feature subset in the task of distinguishing corresponding pairs from noncorre-
sponding pairs. Using a FFDM database with 123 corresponding image pairs and 82 noncorre-
sponding pairs, the distance feature yielded an area under the ROC curve �AUC� of 0.81�0.02
with leave-one-out �by physical lesion� evaluation, and the feature metric subset, which included
distance, gradient texture, and ROI-based correlation, yielded an AUC of 0.87�0.02. The im-
provement by using multiple feature metrics was statistically significant compared to single feature
performance. © 2008 American Association of Physicists in Medicine. �DOI: 10.1118/1.3005641�

Key words: computer-aided diagnosis, full-field digital mammography, correlative feature analysis,
lesion segmentation, feature selection
I. INTRODUCTION

Breast cancer is a leading cause of mortality in American
women, with an estimated 182 460 new cancer cases and
40 480 deaths in the United States in 2008.1 Nevertheless,
between the years 1990 to 2003, there has been a steady
decrease in the annual death rate due to female breast
cancer.2 This decrease largely reflects improvements in early
detection and treatment. Currently, x-ray mammography is
the most prevalent imaging procedure for the early detection
of breast cancer.3

During mammographic screening, multiple projection
views, such as craniocaudal �CC�, mediolateral oblique
�MLO�, and mediolateral �ML� views, are usually obtained.
Researchers have analyzed images from these different
views to increase the performance of computer-aided detec-
tion. Paquerault et al.4 developed a two-view matching
method that computes a correspondence score for each pos-
sible region pair in CC and MLO views, and merged it with
a single-view detection score to improve lesion detectability.
To reduce the number of false positive detections, Zheng
et al.5 identified a matching strip of interest on the ipsilateral
view based on the projected distance to the nipple and

searched for a region within the strip and paired it with the
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original region. Engeland et al.6 built a cascaded multiple-
classifier system, in which the last stage computes suspi-
ciousness of an initially detected region conditional on the
existence and similarity of a linked candidate region in the
other view.

It has also been well recognized that multiple views can
improve the diagnosis of breast cancer in the computerized
analysis of mammograms,7–10 since different projections pro-
vide complementary information about the same physical le-
sion. To merge information from images of different views,
an essential step is to verify that these images actually rep-
resent the same physical lesion.

We present a dual-stage correlative feature analysis �CFA�
method to address the task of classifying corresponding im-
ages of lesions as seen in different views. In this method,
mass lesions are initially segmented automatically from the
surrounding parenchyma. Then various features, including
distance, morphological, and textural features, are extracted
from the mass lesion on each of the two views. For a given
pair of images, one from each view, each pair of computer-
extracted features is merged through a Bayesian artificial
neural network �BANN� to obtain correspondence metrics.

The correspondence metrics are then merged with a second

549012…/5490/11/$23.00 © 2008 Am. Assoc. Phys. Med.
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BANN to yield an estimate of the probability that the two
lesions on different mammographic images are of the same
physical lesion. This CFA method is different from conven-
tional image registration methods in the following two as-
pects: �1� The task of image registration is to align two im-
ages known to represent the same object, while CFA is to
assess the probability that the given two images represent the
same object. �2� The key point of image registration is to
determine a geometrical transformation that minimizes some
cost functions defined by intensities, contours, and mutual
information,11–13 in which various geometrical landmarks,
such as control points and inherent image landmarks �nipple,
curves, regions and breast skin�,14–16 are identified and
matched. The proposed CFA technique is feature based,
which is motivated by the studies on fusion of two-view
information for computer-aided detection,4–6 as well as our
prior research on the task of automated classification of
breast lesions, i.e., in the determination of benign and malig-
nant breast lesions based on computer-extracted features.17,18

Differing from the studies on computer-aided detection,
however, our purpose is to identify the corresponding lesions
from different views, and ultimately improve the perfor-
mance of computer-aided diagnosis. Therefore, the noncor-
responding pairs in our study will be lesion-lesion pairs, as
compared to the lesion-parenchyma or parenchyma-
parenchyma noncorresponding pairs in lesion detection task.
In a correspondence study between two mammographic
views for the lesion diagnosis task, Gupta et al.19 investi-
gated the correlation between corresponding texture features
from two different views, and suggested that one could in-
clude features from an additional view only if they were less
correlated with features from the existing view, i.e., provid-
ing more complementary information. Our study, however,
does not discuss methods to merge information from differ-
ent views, but rather focuses on classifying the correspon-
dence between lesions instead.

II. MATERIALS AND METHODS

The main aspect of the proposed correlative feature analy-
sis includes automatic lesion segmentation, computerized
feature extraction, feature selection, and an estimation of the
probability that two given images represent the same physi-
cal lesion. Figure 1 shows the schematic diagram of the pro-
posed method.

II.A. Database

The full-field digital mammography �FFDM� database in
our study consists of 135 biopsyproven mass lesions ac-
quired at the University of Chicago Hospitals, in which le-
sions were collected under an approved institutional review
board �IRB� protocol. Of the 135 lesions, 67 are benign with
123 mammograms and 68 are malignant with 139 mammo-
grams. All the images were obtained from GE Senographe
2000D systems �GE Medical Systems Milwaukee, WI� with
a spatial resolution of 100�100 �m2 in image plane. The
masses were identified and outlined by an expert breast ra-

diologist based on visual criterion and biopsy-proven reports.
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Based on the correspondence of lesions identified by the ra-
diologist, we constructed 123 corresponding pairs and 82
noncorresponding pairs. Each pair consists of a CC view and
a ML view. Figure 2 shows an example case with multiple
lesions seen on mammograms in CC and ML views. Consid-
ering the most realistic scenario of lesion mismatch in clini-
cal practice, the noncorresponding pairs were constructed
from cases of the same patients but different physical lesions.
Since in our database only 28 patients had two or more le-
sions in the same breast, the noncorresponding dataset,
which includes all possible lesion combinations from the dif-
ferent views, is limited. Table I lists the detailed information
regarding the corresponding and noncorresponding datasets.

II.B. Lesion segmentation

In our study, a dual-stage method,20 on which we have
already reported, was employed to automatically extract le-
sions from the normal breast tissue. In this method, a radial
gradient index �RGI� based segmentation21 is used to yield
an initial contour in a computationally efficient manner. This
initial segmentation also provides a base to identify the ef-
fective circumstance of the lesion via an automatic back-
ground estimation method. Then a region-based active con-
tour model22,23 is utilized to evolve the contour further to the
lesion margin. The active contour model relies on an intrinsic
property of image segmentation in that each segmented re-
gion �i.e., the lesion region and the parenchymal background
region� should be as homogeneous as possible. Thus, the
contour evolution tries to minimize the following energy
function:

E�c1,c2,C� = � · Length�C� + � ·
1

2
�

�

�1 − ���t��2 dxdy

+ �1 · �
inside�C�

�f0�x,y� − c1�2 dxdy

+ �2 · �
outside�C�

�f0�x,y� − c2�2 dxdy , �1�

where ��0, v�0, �1, �2	0 are fixed weight parameters, C
is the evolving contour, and Length�C� is a regularizing term
that prevents the final contour from converging to a small
area due to noise. � represents the entire image space and
���1− ���t��2dxdy is an additional regularizing term that
provides a smoother contour and pushes the contour closer to
the lesion margin with less iterations. c1 and c2 are mean
values inside and outside of C, respectively. The minimiza-
tion of this energy function can be achieved by level set
theory24 and Calculus of Variations, in which the two-
dimensional evolving contour C is represented implicitly as
the zero level set of a three-dimensional function ��x ,y�, i.e.,
C= 	�x ,y��� :��x ,y�=0
. Instead of empirically deter-
mined criteria such as fixed iteration times, a dynamic stop-
ping criterion is implemented to automatically terminate the

contour evolution when it reaches the lesion boundary.
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II.C. Computerized feature extraction

In this study, our primary interest is to investigate the
potential usefulness of various computer-extracted features
in the task of differentiating corresponding image pairs from
noncorresponding ones. Features in this study are grouped
into three categories: �I� margin and density features, �II�
texture features based on gray-level co-occurrence matrix
�GLCM�, and �III� a distance feature. The features in the first
two categories have been described in detail elsewhere25–27

and are only summarized here.

II.C.1. Margin and density features

Margin and density of a mass are two important properties
used by radiologists when assessing the probability of malig-
nancy of mass lesions. The margin of a mass can be charac-
terized by its sharpness and spiculation. The margin sharp-
ness is calculated as the average of the gradient magnitude
along the margin of the mass.25 The margin spiculation is
measured by the full width at half maximum �FWHM� of the
normalized edge-gradient distribution calculated for a neigh-
borhood of the mass with respect to the radial direction, and
by the normalized radial gradient �NRG�.25 Three features
were extracted to characterize different aspects of the density
of a lesion. Gradient texture is the standard deviation of the
gradient within a mass lesion. Average gray value is obtained
by averaging the gray level values of each pixel within the
segmented region of mass lesion, and contrast measures the
difference between the average gray level of the segmented
region and that of the surrounding parenchyma. Furthermore,
an equivalent diameter feature was also used in this study,
which is defined as the diameter of a circle yielding the same

FIG. 1. Schematic diagram of the
area as the segmented lesion.
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II.C.2. Texture features

The calculation of texture features in our study is based
on the gray-level co-occurrence matrix �GLCM�.4,19,26,27 For
an image with G gray levels, the corresponding GLCM is of
size G�G, where each element of the matrix is the joint
probability �pr,
�i , j�� of the occurrence of gray levels i and j
in two paired pixels with an offset of r �pixels� along the
direction 
 in the image.

Fourteen texture feature were extracted from the GLCM
matrix, including contrast, correlation, difference entropy,
difference variance, energy, entropy, homogeneity, maximum
correlation coefficient, sum average, sum entropy, sum vari-
ance, variance, and two information measures of correlation.
These features quantify different characteristics of a lesion,
such as homogeneity, gray-level dependence, brightness,
variation, and randomness.

In our study, texture features were extracted from the le-
sion and the associated region of interest �ROI�. A ROI in-
cludes a lesion and its surrounding neighborhood, which was
determined by an automatic estimation method developed in
our prior study.20 Here, an effective neighborhood is defined
as the set of pixels within a distance d �pixels� from the
circumscribed rectangle of the segmented lesion, as shown in
Fig. 3. It should be noted that this neighborhood estimation
is similar to that used earlier in the lesion segmentation,
however, here the ROI is centered to the edge of the seg-
mented lesion. Furthermore, a two-dimensional linear back-
ground trend correction was employed after the ROI extrac-
tion to eliminate the low-frequency background variations in
the mammographic region.20

For each region, four GLCMs were constructed along

osed correlative feature analysis.
prop
four different directions of 0°, 45°, 90°, and 135°, and a



5493 Yuan et al.: Correlative feature analysis on FFDM 5493
nondirectional GLCM was obtained by summing all the di-
rectional GLCMs. Texture features were computed from
each nondirectional GLCM, resulting in a total of 28 texture
features. To avoid sparse GLCMs for smaller ROIs, the gray
level range of all the image data was scaled down to 6 bits,
resulting in GLCMs of size 64�64. The offset r was empiri-
cally determined to be 16 �pixels�.

II.C.3. Distance feature

In clinical practice, radiologists commonly use the dis-
tance from the nipple to the center of a lesion to correlate the
lesion in different views.4,5 It is generally believed that this
distance remains fairly constant. Thus, a distance feature in
our study measures the Euclidean distance between the
nipple location and the mass center of the lesion. Figure 4
shows the high correlation between the distance features of
the same lesions in CC and ML views, with a correlation
coefficient of 0.88. For this figure, the nipple locations were
manually identified.

In mammographic images, nipple markers are commonly
used. These present as bright markers on the mammograms
�as shown in Fig. 5�, and, thus, an automatic nipple localiza-
tion scheme was developed to locate those markers. The
scheme includes several processing stages. Initially, gray-
level thresholding is employed to the entire mammogram to

TABLE I. The number of lesion/image pairs in corresponding and noncorre-
sponding datasets. The noncorresponding pairs were constructed from cases
of the same breasts but different physical lesions.

Corresponding dataset Noncorresponding dataset

Benign
Images 112 72
Lesions 56 39

Malignant
Images 134 64
Lesions 67 19

Mixed
Images — 28
Lesions — 14

FIG. 2. An example of two lesions in the same breast as seen in CC view
�left� and ML view �right�. The arrow indicates the correspondence of the
same physical lesion in different views.
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extract the breast region from the air background. Then, an-
other gray-level threshold is applied to the breast region,
yielding several nipple marker candidates. The breast skin
boundary is obtained by subtracting a morphologically
eroded28 breast region from its original region. To reduce the
number of falsely identified nipple markers, area and circu-
larity constraints are imposed on each candidate, and those
candidates with area within a given range and circularity
above a certain threshold are kept for the final step. The area
range and circularity threshold were empirically determined
with ten randomly selected images in this study. The nipple
marker is finally chosen as the one closest to the breast
boundary. For those cases in which there is no nipple marker
or the marker is neglected erroneously by the above scheme,
the nipple location is roughly estimated as the point on the
breast skin boundary with the largest distance to the chest
wall.
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FIG. 3. Lesion neighborhood illustration.
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FIG. 4. The correlation between distance features of the same lesions in CC
and ML views. The distance feature is defined as the Euclidean distance
between the nipple location and the mass center of the lesion. Here, the

nipple location is manually identified.
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II.D. Feature selection and classification

For each pairwise set of features extracted from lesions in
different views, a Bayesian Artificial Neural Network
�BANN� classifier29,30 was employed to merge each feature
pair into a correspondence metric, which is an estimate of the
probability that the two lesion images are of the same physi-
cal lesion, i.e., stage I as shown in Fig. 1. For example, Fig.
6�a� shows the distributions of three features �distance, di-
ameter, and texture� generated from breast lesions taken in
different views for corresponding and noncorresponding
datasets. The histograms in Fig. 6�b� demonstrate, for the
corresponding and noncorresponding datasets, the distribu-
tion of these correspondence metrics output from the first
BANN.

Linear stepwise feature selection31 with Wilks lambda cri-
terion was employed on all feature-based correspondence
metrics to select a subset of metrics for the final task of
distinguishing corresponding pairs from noncorresponding
ones. Note that instead of using lesion features directly, the
correspondence metrics obtained from the first BANNs are
used as inputs in the feature selection. BANNs were then
retrained with the selected correspondence metrics to yield
an overall estimate of probability of correspondence, i.e., the
second BANN stage as shown in Fig. 1.

II.E. Evaluation

Receiver operating characteristic �ROC� analysis32,33 was
used to assess the performance of the individual feature-
based correspondence metrics and the overall performance in
the task of distinguishing corresponding image pairs from
noncorresponding ones. The area under the maximum
likelihood-estimated binormal ROC curve �AUC� was used
as an index of performance. ROCKIT software �version 1.1
b, available at http://xray.bsd.uchicago. edu/krl/KRL�R0C/
software�index6.htm�34 was used to determine the p value of
the difference between two AUC values, and the Holm t

35

FIG. 5. Two examples of nipple markers. Nipple markers are bright spots
close to the breast skin boundary, as indicated by arrows.
test for multiple tests of significance was employed to
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evaluate the statistical significance. Leave-one-out by lesion
analysis was used in all performance evaluations. This
method removes all images of a lesion while training with all
other images. The trained classifier is then run on the images
of the lesion removed. In the case of correspondence analy-
sis, images of all pairs, both corresponding and noncorre-
sponding pairs, are removed in the training to eliminate bias.

III. RESULTS

III.A. Segmentation

Figure 7 shows two examples of lesion segmentation us-
ing the dual-stage segmentation method. A measure of area
overlap ratio �AOR� was used to quantitatively evaluate the
segmentation performance, which is defined as the intersec-
tion of human outline and computer segmentation over the
union of them. At the overlap threshold of 0.4, 81% of the
images are correctly segmented.

III.B. Nipple localization method

Figure 8 shows the correlation between distance features
calculated with manually identified nipples and those calcu-
lated with computer-identified nipples. These two distance
features are highly correlated with correlation coefficient of
0.996 �p-value�10−4�. Both of these two distance features
have an AUC value of 0.81�0.02 in the task of distinguish-
ing between corresponding and noncorresponding image
pairs.

III.C. Performance of single-feature correspondence
metrics

We calculated the correlation coefficient r for the corre-
sponding dataset, the r� for the noncorresponding datasets,
and their associated p-value for features extracted from two
view images. Table II shows the results for features with r
�0.5. It also shows the AUC values and the associated stan-
dard errors �se� representing the performance of the corre-
spondence metrics of these individual features in the task of
differentiating the corresponding lesion pairs from noncorre-
sponding ones, with the lesions automatically delineated by
the segmentation algorithm. The results show that all three
categories have potential for the classification task. The re-
sults also show that the performance of pairwise image clas-
sification as learned by a BANN is determined by both the
correlation of corresponding pairs and that of noncorre-
sponding pairs.

We also investigated the effect of lesion segmentation on
the performance of each individual feature-based correspon-
dence metric. Table III shows the AUC values and the asso-
ciated standard error �se� of the 18 features extracted from
lesions delineated by a radiologist and by the dual-stage seg-
mentation algorithm, respectively. Also shown are the 95%
confidence intervals �C. I.� of the difference of AUCs ob-
tained from radiologist-outlined lesions �AUCR� and the
computer-segmented lesions �AUCC�, i.e., �AUC=AUCR

−AUCC. For 5 of the 18 features, manual segmentation

yielded statistically significant higher AUC values than com-
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puter segmentation �overall significant level T=0.05�,35 and
we failed to show significant differences between manual
segmentation and computer segmentation for the remaining

FIG. 6. �a� The scatter plots of three features �distance, diameter, and textur
output correspondence metrics of these features obtained from the first BAN
features.
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III.D. Multiple features performance

Two sets of individual feature-based correspondence met-
31

nerated from lesions seen on CC and ML views. �b� The distribution of the
age.
e� ge
rics were selected by stepwise feature selection —one set
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for each of the two segmentation methods, as shown on
Table IV. The subset selected from the feature-based corre-
spondence metrics based on manually segmented lesions in-
cluded distance �FIII,1�, equivalent diameter �FI,3�, and gra-
dient texture �FI,1�. The subset selected from computer-
segmented lesions included distance �FIII,1�, ROI-based
correlation �FII,6�, and gradient texture �FI,1�. The leave-one-
out �by lesion� validation using BANN to merge the selected

FIG. 7. Segmentation results for a benign lesion and a malignant lesion. Th
radiologist, and the solid lines in the bottom four images are segmentation re
view of a benign lesion, �b� the corresponding ML view of the benign lesio
malignant lesion.
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identified nipple locations and those calculated from computer-identified
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correspondence metrics yielded an AUC of 0.89 for manual
segmentation and 0.87 for computer segmentation, respec-
tively. We failed to show a statistically significant difference
between the performances of these two metric subsets �p
=0.35�. The improvement by using multiple-feature-based
correspondence metrics was statistically significant com-
pared to that of single feature-based correspondence metric
performance, as shown in Table IV.

Since the distance feature performed best among the in-
dividual features for differentiating corresponding and non-
corresponding image pairs, we evaluated the performance of
the proposed correlative feature analysis method with the
distance feature excluded. Using the remaining 17 features
extracted from the computer-segmented lesions, a feature-
based correspondence metric subset was obtained by step-
wise feature selection, which included equivalent diameter
�FI,3�, ROI-based correlation �FII,6�, and ROI-based sum of
variance �FII,14�. The leave-out-out �by lesion� validation us-
ing BANN yielded an AUC of 0.71�0.03. The difference as
compared to the performance of distance feature is statisti-
cally significant �p=0.005�. This result indicates that the dis-
tance feature is dominant but not sufficient for the overall
performance of the proposed method.

IV. DISCUSSION

In this study, we presented a correlative feature analysis
framework to assess the probability that a given pair of two
mammographic images is of the same physical lesion. Our
results demonstrate that this framework has potential to dis-
tinguish between corresponding and noncorresponding lesion
pairs. It is very important to note that our method is feature

id lines in the upper four images depict the lesion margin as outlined by a
from our previously-reported automatic dual-stage method �Ref. 20�. �a� CC
CC view of a malignant lesion, and �d� the corresponding ML view of the
e sol
sults
n, �c�
based, which employs two BANN classifiers to estimate the
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TABLE II. Performance of the correspondence metrics from computer-extracted lesion features that yielded r
�0.5 in differentiating corresponding image pairs from noncorresponding ones. r is the correlation coefficient
for the corresponding dataset and r� is for the noncorresponding dataset. The value after “�” is the standard
error �se� associated with each AUC.

Corresponding pairs Noncorresponding pairs

AUC�ser p value r� p value

I. Density and morph. features
FI,1: Gradient texture 0.53 �0.001 0.27 0.01 0.56�0.03
FI,2: Average gray level 0.58 �0.001 −0.10 0.39 0.54�0.03
FI,3: Equivalent diameter 0.62 �0.001 0.14 0.22 0.66�0.03

II. Texture features
* Lesion based
FII,1: Correlation 0.56 �0.001 0.13 0.25 0.65�0.03
FII,2: Info. corr. 1 0.50 �0.001 0.06 0.61 0.67�0.03
FII,3: Info. corr. 2 0.53 �0.001 0.09 0.40 0.67�0.03
FII,4: Max. corr. 0.53 �0.001 0.11 0.35 0.66�0.03
** ROI based
FII,5: Contrast 0.58 �0.001 0.16 0.15 0.54�0.03
FII,6: Correlation 0.67 �0.001 0.24 0.03 0.56�0.03
FII,7: Diff. variance 0.61 �0.001 0.20 0.07 0.53�0.03
FII,8: Entropy 0.51 �0.001 0.15 0.17 0.56�0.03
FII,9: Info. corr. 1 0.62 �0.001 0.16 0.15 0.61�0.03
FII,10: Info. corr. 2 0.62 �0.001 0.14 0.21 0.57�0.03
FII,11: Max. corr. 0.61 �0.001 0.11 0.33 0.55�0.03
FII,12: Sum. Average 0.63 �0.001 0.27 0.01 0.59�0.03
FII,13: Sum. Entropy 0.53 �0.001 0.16 0.15 0.57�0.03
FII,14: Sum. Variance 0.61 �0.001 0.41 �0.001 0.50�0.03

III. Distance feature
FIII,1: Distance 0.88 �0.001 0.23 0.04 0.81�0.02
TABLE III. Performance of 18 single feature-based correspondence metrics obtained from radiologist-outlined
�AUCR� and computer-segmented �AUCC� lesions, respectively. The value after “�” is the standard error �se�
associated with each AUC. The two-tailed p-value and 95% C.I. of �AUC were calculated by ROCKIT. The
“Sig. level” column represents the significance level of individual tests adjusted with Holm t test �overall
significant level T=0.05� and the tests with asterisks � *� indicate significant difference using the adjusted
significance level. The features have the same convention as Table II.

Feature AUCR�se AUCC�se p value Sig. level 95% C.I. of �AUC

FI,1 0.65�0.03 0.56�0.03 0.04 0.0045 �0.004, 0.20�
FI,2 0.53�0.03 0.54�0.03 0.76 — �−0.07,0.05�
F

I,3
* 0.78�0.03 0.66�0.03 0.001 0.0031 �0.05, 0.19�

FII,1 0.71�0.03 0.65�0.03 0.06 — �−0.01,0.13�
FII,2 0.68�0.03 0.67�0.03 0.66 — �−0.05,0.09�
FII,3 0.69�0.03 0.67�0.03 0.48 — �−0.04,0.09�
FII,4 0.70�0.03 0.66�0.03 0.20 — �−0.02,0.11�
FII,5 0.57�0.03 0.54�0.03 0.30 — �−0.03,0.10�
FII,6 0.61�0.03 0.56�0.03 0.01 0.0042 �0.01, 0.10�
FII,7 0.61�0.03 0.53�0.03 0.009 0.0038 �0.02, 0.15�
FII,8 0.58�0.03 0.56�0.03 0.44 — �−0.03,0.07�
F

II,9
* 0.69�0.03 0.61�0.03 0.002 0.0036 �0.03, 0.14�

F
II,10
* 0.65�0.03 0.57�0.03 4�10−4 0.0029 �0.04, 0.13�

F
II,11
* 0.66�0.03 0.55�0.03 �10−5 0.0028 �0.06, 0.15�

FII,12 0.62�0.03 0.59�0.03 0.34 — �−0.03,0.09�
FII,13 0.58�0.03 0.57�0.03 0.90 — �−0.05,0.05�
F

II,14
* 0.59�0.03 0.50�0.03 0.001 0.0031 �0.05, 0.18�

FIII,1 0.81�0.02 0.81�0.02 0.73 — �−0.01,0.01�
Medical Physics, Vol. 35, No. 12, December 2008
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relationships �linear or nonlinear� between computer-
extracted features of a lesion in different views. The
supervised-learning manner not only makes the relationship
flexible to each feature, but also avoids the sophisticated
geometrically deformable models and the corresponding
computationally demanding optimizations that are used in
geometric breast registrations.36,37

In our study, we excluded those features characterizing
subtle information of a lesion, such as spiculation, margin
sharpness, and normalized radial gradient �NRG�. These fea-
tures have been used in the task of distinguishing between
benign and malignant lesions for mammographic images.9,25

However, as the lesion details are usually sensitive to posi-
tions, it is expected that the associated features are less cor-
related in different views. Nevertheless, our ultimate aim is
to improve the diagnostic performance of CAD systems with
multiple images, in which complementary information pro-
vided by different images are desired; therefore, those fea-
tures corresponding to lesion details would be used in the
later step of the overall CAD scheme for differentiating be-
tween malignant and benign lesions.

In addition, as shown in Table III, improving lesion seg-
mentation can improve the performance of the computer in
differentiating corresponding and noncorresponding image
pairs. This is expected since more accurate segmentation
yields more reliable computer-extracted features with which
to characterize the lesion and the two-view correspondence.

A two-stage procedure was employed to address the prob-
lem of estimating the probability of correspondence for a
pair of lesion images in different views. Stage I deals with
the pairwise features and estimates the probability of corre-
spondence based on individual lesion features. Stage II
merges the correspondence metrics estimated in stage I from
various individual lesion features to yield an overall prob-
ability of correspondence. To illustrate the superiority of the
proposed two-stage method to a one-stage method that com-
bines the multiple paired features directly, we compared the
performances of the two methods with the four features of
distance, lesion equivalent diameter, lesion-based correla-
tion, and lesion-based information correlation, all of which
performed best among the 18 individual features extracted
from computer-segmented lesions. The two-stage scheme
yielded an AUC of 0.83 while the one-stage scheme yielded
an AUC of 0.67, with difference being statistically significant

−4

TABLE IV. Performances of the overall correlative
validation, as well as the comparison with the dista
between the overall performances of merged feat
segmented lesions. Same convention as Table III.

Lesion segmentation Feature set AU

Radiologist outlined
FIII,1 0.8
FIII,1, FI,3, FI,1 0.8

Computer segmented
FIII,1, FII,6, FI,1 0.8
FIII,1 0.8
�p�10 �. The inferior performance of the one-stage scheme
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can be mainly explained by the fact that a single BANN
classifier lacks the ability to deal with features in a pairwise
way, thus the information regarding correlation between fea-
ture pairs cannot be efficiently utilized.

In order to evaluate how the pathology of lesions affects
the performance of the proposed method, the entire dataset
was split into benign and malignant subsets, as described in
Table I. As noted earlier, the correlation value between pair-
wise features, and not the feature value itself, plays a crucial
role in the task of distinguishing corresponding and noncor-
responding image pairs, thus we compared the correlation
coefficients between image pairs for benign and malignant
lesions, respectively. We failed to observe significant differ-
ence for most of features between benign and malignant le-
sions, as shown in Fig. 9. The results indicate that the pair-
wise feature analysis may be independent of pathology.

Due to the database size, there are two limitations in this
preliminary study. First, the proposed correlative feature
analysis was only applied on CC versus ML views, however,
pairing other views, such as CC versus MLO and ML versus
MLO, is also commonly used in clinical practice. Thus, in
further study, we will evaluate the computerized analysis on
those view pairs and investigate how the different pairwise
views affect the performance of proposed analysis. Second,
for noncorresponding pairs, lesions could be with either
same pathology �i.e., both malignant or both benign� or dif-
ferent pathology �i.e., one malignant and one benign�. Spe-
cifically, we are more interested in noncorresponding lesions
of different pathology since integrating information from le-
sions with different pathology would hinder more the perfor-
mance of CAD systems. However, we regarded the noncor-
responding lesion pairs as a whole in this study as there are
only 28 image pairs with different pathology. The perfor-
mance of the proposed analysis on noncorresponding lesion
pairs with different pathology, and the mismatching effects
on the CAD performance are interesting research questions
for our future study.

V. CONCLUSION

In this paper, we have presented a novel two-BANN cor-
relative feature analysis framework to estimate the probabil-
ity that a given pair of two images is of the same physical
lesion. Our investigation indicates that the proposed method

re analysis method using leave-one-out �by lesion�
eature alone. This table also shows the comparison
obtained from radiologist-outlined and computer-

se p value 95% C.I. of �AUC

.02

 3�10−4 �0.04, 0.12�

.02

 0.35 �−0.02,0.06�

.02

 0.01 �0.01, 0.08�

.02
featu
nce f
ures

C�

1�0
9�0

7�0
1�0
is a promising way to distinguish between corresponding and
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noncorresponding pairs. With leave-one-out �by lesion� cross
validation, the distance-feature-based correspondence metric
yielded an AUC of 0.81 and a feature correspondence metric
subset, which includes distance, gradient texture, and ROI-
based correlation, yielded an AUC of 0.87. The improve-
ment by using multiple feature correspondence metrics was
statistically significant compared to single feature metric per-
formance. This method has the potential to be generalized
and employed to differentiating corresponding and noncorre-
sponding pairs from multi-modality breast imaging.
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Abstract. In this study, we present a computerized framework to iden-
tify the corresponding image pair of a lesion in CC and MLO views, a
prerequisite for combining information from these views to improve the
diagnostic ability of both radiologists and CAD systems. A database of
126 mass lesons was used, from which a corresponding dataset with 104
pairs and a non-corresponding dataset with 95 pairs were constructed.
For each FFDM image, the mass lesions were firstly automatically seg-
mented via a dual-stage algorithm, in which a RGI-based segmentation
and an active contour model are employed sequentially. Then, various
features were automatically extracted from the lesion to characterize the
spiculation, margin, size, texture and context of the lesion, as well as its
distance to nipple. We developed a two-step strategy to select an effective
subset of features, and combined it with a BANN to estimate the proba-
bility that the two images are of the same physical lesion. ROC analysis
was used to evaluate the performance of the individual features and the
selected feature subset for the task of distinguishing corresponding and
non-corresponding pairs. With leave-one-out evaluation by lesion, the
distance feature yielded an AUC of 0.78 and the feature subset, which in-
cludes distance, ROI-based energy and ROI-based homogeneity, yielded
an AUC of 0.88. The improvement by using multiple features was statis-
tically significant compared to single feature performance (p < 0.001).

1 Introduction

In mammographic screening, different projections provide complementary infor-
mation about the same physical lesion, and thus, it has been well recognized that
multiple views can improve the diagnosis of breast cancer in the computerized
analysis of mammograms [1,2,3]. To merge information from images of different
views, an essential step is to clarify if these images actually represent the same
physical lesion, as Fig. 1 shows. In this study, we present a correlative feature
analysis (CFA) framework to address the task of identifying corresponding im-
ages of lesions as seen with craniocaudal (CC) and mediolateral oblique (MLO)
views.

E.A. Krupinski (Ed.): IWDM 2008, LNCS 5116, pp. 323–328, 2008.
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Fig. 1. An example of two lesions in the same breast seen in CC view (left) and MLO
view (right). The arrow indicates the correspondence of the same physical lesion in
different views.

2 Database

The full-field digital mammography (FFDM) database consists of 126 biopsied
lesions obtained from GE Senographe 2000D systems with spatial resolution
of 0.1mm × 0.1mm. The mass lesions were identified and outlined by an ex-
pert breast radiologist based on visual criterion and biopy-proven reports. The
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Fig. 2. Distribution of lesions’ equivalent diameters obtained from the FFDM database
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distribution of lesion size, which is characterized as the equivalent diameter
of the area inside the radiologist’s manually delineated contour, is shown in
Fig. 2. Based on the correspondence of lesions identified by the radiologist, we
constructed 104 corresponding and 95 non-corresponding image pairs. Each pair
consists of a CC view and a MLO view. Considering the most realistic scenario
of lesion mismatch in clinical practice, the non-corresponding pairs were built
from cases of the same patients but different physical lesions.

3 Methods

3.1 Lesion Segmentation

A dual-stage segmentation method was initially applied to extract mass lesions
from the surrounding tissues [4]. This algorithm utilizes an active contour model
that maximizes a cost function based on the homogeneities inside and outside
of the evolving contour [5]. Prior to the application of the active contour model,
a radial gradient index (RGI) based algorithm [6] is employed to yield an ini-
tial contour close to the lesion boundary location in a computationally efficient
manner. Based on the initial segmentation, an automatic background estimation
method is applied to identify the effective circumstance of the lesion. In addi-
tion, instead of empirically-determined criteria such as fixed iteration times, a
dynamic stopping criterion is implemented to terminate the contour evolution
when it reaches the lesion boundary.

3.2 Feature Extraction

In our study the computer-extracted features were grouped into three categories.
The first category includes features quantifying margin sharpness, spiculation,
gradient, contrast and shape of a lesion [7]. The second category includes tex-
ture features extracted from two regions, i.e. the lesion and the entire encom-
passing ROI, respectively. For each region, a 2D gray-level co-occurrence matrix
(GLCM) was constructed, and texture features were extracted to characterize
homogeneity, gray-level dependence, brightness, variation and randomness [8].
We developed an automatic neighborhood estimation method to determine the
effective circumstance of the lesion.

The third group includes a distance feature calculated as the Euclidean dis-
tance from the nipple location to the center of the lesion. Since nipple mark-
ers, which present as bright markers on the mammograms, are commonly used
in mamographic images, we developed a nipple identification method by lo-
cating those markers automatically. This method includes several processing
steps, as illustrated in Fig. 3. Initially, gray-level thresholding is employed on the
entire mammogram to extract the breast region from the external-to-breast back-
ground. Then, another gray-level threshold is applied to the breast region, yield-
ing several nipple marker candidates. The breast skin boundary is obtained by
subtracting a morphologically eroded [9] breast region from its original region.



326 Y. Yuan et al.

Full FFDM image

Breast region extraction

First thresholding

Breast contour extractionSecond thresholding

False positive reduction

Nipple localization

Fig. 3. Schematic diagram of the proposed automatic nipple identification algorithm

To reduce the number of falsely identified nipple markers, area and circular-
ity constraints are imposed on each candidates, and those candidates with area
within a given range and circularity above a certain threshold are kept for the
final step. The area range and circularity threshold were empirically determined
with 10 randomly selected images in this study. The nipple marker is finally
chosen as the one closest to the breast boundary.

3.3 Feature Selection and Classification

For each pair-wise set of features in representing the two different views, a
Bayesian artificial neural network (BANN) classifier [10] was employed to merge
each feature pair into a correspondence metric, which estimates the probabil-
ity that the two images are of the same physical lesion, based on that spe-
cific feature. Next, an effective subset of correspondence metrics was selected
via a linear stepwise feature selection [11] with a Wilks lambda criterion, and
merged with another BANN to yield an overall estimateion of the probability of
correspondence.

3.4 Evaluation

The area under the receiver operating characteristic (ROC) curve (AUC) [12][13]
was used as an index of performance of the individual features and the classi-
fier outputs in the task of distinguishing between corresponding pairs from and
non-corresponding ones. The levels of statistical significance among individual
features, and single feature versus merged multiple features, were calculated by
ROCKIT software (version 1.1b).
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Fig. 4. ROC curves of leave-one-out evaluation by lesion for distance feature and the
feature subset (distance feature, ROI-based energy and ROI-based homogeneity)

4 Results

In a leave-one-out evaluation by lesion, the distance feature outperformed among
all the other individual features, yielding an AUC of 0.78. The selected feature
subset, which includes distance, ROI-based energy and ROI-based homogeneity,
yielded an AUC of 0.88. The improvement by using multiple features was sta-
tistically significant compared to single feature performance (p < 0.001). ROC
curves resulting from evaluation of the distance feature and the feature subset
are shown in Fig. 4.

5 Discussion

We presented here a correlative feature analysis framework to assess the proba-
bility that a given pair of two mammographic images from CC and MLO view
is of the same physical lesion. Our results are promising into distinguishing be-
tween corresponding and non-corresponding lesion pairs. It is important to note
that our method is feature-based, which employs a BANN classifier to estimate
the relationship between computer-extracted features of a lesion in CC and MLO
views. The supervised-learning manner cannot only make the relationship flex-
ible to each feature, but also avoid the sophisticated geometrically-deformable
models that are widely used in geometric breast registrations.
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We are generalizing this framework and applying it to differentiate corre-
sponding and non-corresponding pairs from multi-modality breast images, such
as FFDM and breast MRI images.
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Breast cancer classification with mammography and

DCE-MRIYading Yuana, Maryellen L. Giger, Hui Li and Charlene SennettaDepartment of Radiology, The University of Chiago, Chiago, IL USA 60637ABSTRACTSine di�erent imaging modalities provide omplementary information regarding the same lesion, ombining in-formation from di�erent modalities may inrease diagnosti auray. In this study, we investigated the use ofomputerized features of lesions imaged via both full-�eld digital mammography (FFDM) and dynami ontrast-enhaned magneti resonane imaging (DCE-MRI) in the lassi�ation of breast lesions. Using a manuallyidenti�ed lesion loation, i.e. a seed point on FFDM images or a ROI on DCE-MRI images, the omputer auto-matially segmented mass lesions and extrated a set of features for eah lesion. Linear stepwise feature seletionwas �rstly performed on single modality, yielding one feature subset for eah modality. Then, these seletedfeatures served as the input to another feature seletion proedure when extrating useful information from bothmodalities. The seleted features were merged by linear disriminant analysis (LDA) into a disriminant sore.Reeiver operating harateristi (ROC) analysis was used to evaluate the performane of the seleted featuresubset in the task of distinguishing between malignant and benign lesions. From a FFDM database with 321lesions (167 malignant and 154 benign), and a DCE-MRI database inluding 181 lesions (97 malignant and 84benign), we onstruted a multi-modality dataset with 51 lesions (29 malignant and 22 benign). With leave-one-out-by-lesion evaluation on the multi-modality dataset, the mammography-only features yielded an area underthe ROC urve (AUC) of 0.62± 0.08 and the DCE-MRI-only features yielded an AUC of 0.90± 0.05. The om-bination of these two modalities, whih inluded a spiulation feature from mammography and a kineti featurefrom DCE-MRI, yielded an AUC of 0.94± 0.03. The improvement of ombining multi-modality information wasstatistially signi�ant as ompared to the use of mammography only (p = 0.0001). However, we failed to showthe statistially signi�ant improvement as ompared to DCE-MRI, with the limited multi-modality dataset(p = 0.22).Keywords: Breast aner, mammography, DCE-MRI, omputer-aided diagnosis1. INTRODUCTIONBreast aner is the most ommon malignany in Amerian women and the seond most ommon ause of deathsfrom malignany in the population (after lung aner). Aording to the Amerian Caner Soiety, about 182, 460women in the United States will be found to have invasive breast aner in 2008, and about 40, 480 women willdie from the disease this year.1 Although there are urrently limited methods for uring breast aner, earlydetetion by breast imaging plays an important role in reduing the mortality. Between the years 1991 and 2003,there has been a steady derease in the annual death rate from female breast aner, from 32.69 to 25.19 (per
100, 000 population). This derease largely re�ets improvements in early detetion and treatment.Although mammography has ahieved signi�ant suess and redues the mortality from breast aner by
15% − 35%,2, 3 it is far from perfet: about 15% − 20% of aners are missed, and 75% of lesions deteted bymammography are benign, resulting in many unneessary medial proedures, inluding biopsies.4 Consequently,some omplementary imaging modalities, suh as breast DCE-MRI and breast sonography, are being investigatedto improve the sensitivity and spei�ity of breast aner detetion and diagnosis.While the results of omputer-aided diagnosis (CAD) systems for single imaging modality are enouraging,merging information aross di�erent modalities is reently attrating more attention. Beause di�erent imag-ing modalities provide omplementary information regarding lesions, ombining information from two or moremodalities may inrease the diagnosti auray. Several investigations have been onduted to ombine informa-tion from mammography and sonography to improve the diagnosis of breast aner.5–8 Their results showed thatthe performane of aner lassi�ation was improved as ompared to eah individual modality. However, to the
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Figure 1. Example: a malignant lesion imaged by both mammography (left) and DCE-MRI (right). The solid lines in bothimages are the segmentation results from the dual-stage method9 and the fuzzy -means based method,10 respetively.best of our knowledge, there is limited researh on ombining information from mammography and DCE-MRI.Thus, in this study, we investigated the use of omputerized features of lesions imaged via both mammographyand DCE-MRI (Fig. 1) in the lassi�ation of breast lesions.2. METHODSOur omputerized sheme onsists of several steps: 1) automati extration of lesions on eah modality images viaomputerized segmentation methods; 2) automati extration of various features (mathematial desriptors) fromlesions; and 3) merging of information from di�erent modalities and to estimate the probability of malignany.2.1. Lesion segmentationFor FFDM images, a dual-stage method was employed to automatially extrat lesions from the normal breasttissue.9 In this method, a radial gradient index (RGI) based segmentation11 is used to yield an initial ontourlose to the lesion boundary loation in a omputationally e�ient manner. This initial segmentation also pro-vides a base to identify the e�etive irumstane of the lesion via an automati bakground estimation method.Then a region-based ative ontour model12 is utilized to evolve the ontour further to the lesion boundary. Theative ontour model relies on an intrinsi property of image segmentation that eah segmented region should beas homogeneous as possible for an image formed by two regions. Instead of empirially determined riteria suhas �xed iteration times, a dynami stopping riterion is implemented to terminate the ontour evolution whenit reahes the lesion boundary.For DCE-MRI images, a fuzzy -means (FCM) lustering-based method was used for the segmentation oflesions in 3D spae.10 This sheme inludes six steps. An ROI is �rst seleted by a human operator; then thepost-ontrast ROI series are enhaned by dividing the pixel value at eah voxel by the value at the orrespondingpre-ontrast voxel. After the FCM lustering method is applied to partition the whole ROI into lesion andnon-lesion parts, the lesion membership map is binarized with an empirially determined threshold. Then a 3Donneted-omponent labeling operation is performed to redue the false-positive voxels. Finally, a hole-�llingoperation is performed yielding the �nal segmented lesion.2.2. Computerized feature extrationFor FFDM images, �fteen features were extrated from the segmented lesions, whih haraterize spiulation,margin sharpness, shape and density of the lesions.13 In our FFDM database, the number of mammogramsavailable for eah physial lesion was di�erent, ranging from 1 to 13. Thus, for eah feature, we determined arepresentative value of a lesion as its average value over all the mammograms of that partiular lesion.For DCE-MRI images, another 15 features were extrated from the lesions in 3D spae, whih inludedspiulation features, shape features, enhanement-kinetis-based features and enhanement-variane dynamis



Figure 2. Flow hart of feature seletion and lassi�ation. .features.14 The harateristi kineti urves were generated from the �most-enhaned� regions, whih wereautomatially identi�ed by a FCM lustering method.152.3. Feature seletion and lassi�ationIn this study, the feature seletion proedure inluded two steps, as shown in Fig. 2. Linear stepwise featureseletion,16 with Wilke's lambda riterion, was �rstly performed on single modalities, yielding one feature subsetfor eah modality. Then, these seleted features served as the input to another feature seletion proedure whenextrating useful information from both modalities.Linear disriminant analysis (LDA)17 was employed to merge the seleted features to a single disriminantsore that is related to the estimated likelihood of malignany.2.4. Performane evaluation and statistial analysisThe performane of disriminant sores from both single modality and multiple modalities, in the task of dif-ferentiating malignant lesions from benign ones, was evaluated using reeiver operating harateristi (ROC)analysis,18, 19 with the area under the ROC urve (AUC) as a �gure of merit. The level of statistial signi�anewas alulated by ROCKIT software (version 1.1b). A leave-one-out-by-lesion evaluation was used to evaluatethe performane of eah lassi�er. 3. RESULTSIn this preliminary study, we used a FFDM database inluding 321 lesions (167 malignant and 154 benign), anda DCE-MRI database inluding 181 lesions (97 malignant and 84 benign). All the lesions are biopsy-proven.From these two databases, we onstruted a multi-modality dataset of 51 lesions (29 malignant and 22 benign).Mammograms and DCE-MRI images are available for these lesions.With the entire FFDM database, ROI-based normalized radial gradient (NRG), lesion-based NRG, andgradient texture were seleted as an e�etive feature subset. The leave-one-out-by-lesion evaluation using LDAto merge the seleted features yielded an AUC value of 0.62 ± 0.08 on the multi-modality dataset.
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Figure 3. Satter plot of the spiulation feature from mammography versus the peak loation of the kineti urve fromDCE-MRI.With the entire DCE-MRI database, margin sharpness, irregularity, peak loation of the enhanement kinet-is, and enhanement-variane uptake rate were seleted as an e�etive feature subset. The leave-one-out-by-lesion evaluation using LDA yielded an AUC value of 0.90 ± 0.05 on the multi-modality dataset.With the multi-modality dataset, the lesion-based NRG from mammography and the peak loation of theenhanement kinetis from DCE-MRI were seleted from the above 7 features. Figure 3 shows the satter plotof these two features on the multi-modality dataset. The leave-one-out-by-lesion evaluation using LDA yieldedan AUC of 0.94 ± 0.03.The improvement of ombining multi-modality information was statistially signi�ant as ompared to theuse of mammography only (p = 0.0001). However, although the performane of ombining multi-modalityinformation was better than the use of DCE-MRI only, we failed to show the statistially signi�ant improvement,with the limited multi-modality dataset (p = 0.22).4. CONCLUSIONIn the proposed study, we investigated the performane of a omputerized lassi�ation sheme with omputer-extrated features based on mammography alone, DCE-MRI alone, and the ombination of these two modalities.In mammography, spiulation and texture features were shown to be e�etive for breast aner lassi�ation.In DCE-MRI images, margin sharpness, lesion shape and kineti features were salient. In our previous studies,spiulation and kineti features have been justi�ed as the best features when distinguishing malignant and benignlesions for mammography and DCE-MRI, respetively. Our feature seletion method orretly aptured thesetwo features when ombining information aross di�erent modalities.Our pilot results showed that ombining information from multiple modalities performed better than thesingle modality in the task of distinguishing between malignant and benign lesions. We are urrently expandingour multi-modality database and will evaluate the performane of ombining information from multi-modalitieson the larger database. ACKNOWLEDGMENTThis work was supported in part by US Army Breast Caner Researh Program (BCRP) Predotoral TraineeshipAward (W81XWH-06-1�0726), by United States Publi Health Servie (USPHS) Grant CA89452 and P50-CA125183, and by DOE grant DE-FG02-08ER64578. M. L. Giger is a shareholder in R2 Tehnology, In(Sunnyvale, CA), a Hologi Company. It is the University of Chiago Con�it of Interest Poliy that investigatorsdislose publily atually or potential signi�ant �nanial interest with would reasonably appear to be diretlyand signi�antly a�eted by the researh ativities.
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